פרסומים

2021
Aniv Mann Brukner, Sarah Billington, Mony Benifla, Tot Bui Nguyen, Hadas Han, Odeya Bennett, Tal Gilboa, Dana Blatch, Yakov Fellig, Olga Volkov, Jashvant D. Unadkat, Dana Ekstein, ו Sara Eyal. 2021. “Abundance of P-glycoprotein and Breast Cancer Resistance Protein Measured by Targeted Proteomics in Human Epileptogenic Brain Tissue.” Molecular Pharmaceutics, 18, 6, Pp. 2263–2273. תקציר
Our goal was to measure the absolute differential abundance of key drug transporters in human epileptogenic brain tissue and to compare them between patients and at various distances from the epileptogenic zone within the same patient. Transporter protein abundance was quantified in brain tissue homogenates from patients who underwent epilepsy surgery, using targeted proteomics, and correlations with clinical and tissue characteristics were assessed. Fourteen brain samples (including four epileptogenic hippocampal samples) were collected from nine patients. Among the quantifiable drug transporters, the abundance (median, range) ranked: breast cancer resistance protein (ABCG2/BCRP; 0.55, 0.01-3.26 pmol/g tissue) > P-glycoprotein (ABCB1/MDR1; 0.30, 0.02-1.15 pmol/g tissue) > equilibrative nucleoside transporter 1 (SLC29A1/ENT1; 0.06, 0.001-0.35 pmol/g tissue). The ABCB1/ABCG2 ratio (mean 0.27, range 0.08-0.47) was comparable with literature values from nonepileptogenic brain tissue (mean 0.5-0.8). Transporter abundance was lower in the hippocampi than in the less epileptogenic neocortex of the same patients. ABCG2/BCRP and ABCB1/MDR1 expression strongly correlated with that of glucose transporter 1 (SLC2A1/GLUT1) (r = 0.97, p < 0.001; r = 0.90, p < 0.01, respectively). Low transporter abundance was found in patients with overt vascular pathology, whereas the highest abundance was seen in a sample with normally appearing blood vessels. In conclusion, drug transporter abundance highly varies across patients and between epileptogenic and less epileptogenic brain tissue of the same patient. The strong correlation in abundance of ABCB1/MDR1, ABCG2/BCRP, and SLC2A1/GLUT1 suggests variation in the content of the functional vasculature within the tissue samples. The epileptogenic tissue can be depleted of key drug transport mechanisms, warranting consideration when selecting treatments for patients with drug-resistant epilepsy.
Muna Aqawi, Ronit Vogt Sionov, Ruth Gallily, Michael Friedman, ו Doron Steinberg. 2021. “Anti-Bacterial Properties of Cannabigerol Toward Streptococcus mutans.” Frontiers in microbiology, 12, Pp. 656471. תקציר
Streptococcus mutans (S. mutans) is a gram-positive facultatively anaerobic bacterium and the most common pathogen associated with tooth caries. The organism is acid tolerant and can undergo physiological adaptation to function effectively in acid environments such as carious dental plaque. Some cannabinoids have been found to have potent anti-microbial activity against gram-positive bacteria. One of these is the non-psychoactive, minor phytocannabinoid Cannabigerol (CBG). Here we show that CBG exhibits anti-bacterial activities against S. mutans. CBG halts the proliferation of planktonic growing S. mutans, which is affected by the initial cell density. High-resolution scanning electron microscopy showed that the CBG-treated bacteria become swollen with altered membrane structures. Transmission electron microscopy provided data showing that CBG treatment leads to intracellular accumulation of membrane structures. Nile red, DiOC2(3) and laurdan staining demonstrated that CBG alters the membrane properties, induces membrane hyperpolarization, and decreases the membrane fluidity. CBG-treated bacteria showed increased propidium iodide uptake and reduced calcein AM staining, suggesting that CBG increases the membrane permeability and reduces the metabolic activity. Furthermore, CBG prevented the drop in pH caused by the bacteria. In summary, we present here data showing the mechanisms by which CBG exerts its anti-bacterial effect against S. mutans.
Mark Feldman, Ronit Vogt Sionov, Raphael Mechoulam, ו Doron Steinberg. 2021. “Anti-Biofilm Activity of Cannabidiol against Candida albicans.” Microorganisms, 9, 2. תקציר
Candida albicans is a common fungal pathogen in humans. Biofilm formation is an important virulence factor of C. albicans infections. We investigated the ability of the plant-derived cannabidiol (CBD) to inhibit the formation and removal of fungal biofilms. Further, we evaluated its mode of action. Our findings demonstrate that CBD exerts pronounced time-dependent inhibitory effects on biofilm formation as well as disruption of mature biofilm at a concentration range below minimal inhibitory and fungicidal concentrations. CBD acts at several levels. It modifies the architecture of fungal biofilm by reducing its thickness and exopolysaccharide (EPS) production accompanied by downregulation of genes involved in EPS synthesis. It alters the fungal morphology that correlated with upregulation of yeast-associated genes and downregulation of hyphae-specific genes. Importantly, it represses the expression of C. albicans virulence-associated genes. In addition, CBD increases ROS production, reduces the intracellular ATP levels, induces mitochondrial membrane hyperpolarization, modifies the cell wall, and increases the plasma membrane permeability. In conclusion, we propose that CBD exerts its activity towards C. albicans biofilm through a multi-target mode of action, which differs from common antimycotic agents, and thus can be explored for further development as an alternative treatment against fungal infections.
Nino Tetro, Sonia Moushaev, Miri Shmuel, ו Sara Eyal. 2021. “Antiseizure medications and fetal nutrients: Effects on choline transporters in a human placental cell line.” Epilepsia, 62, 6, Pp. 1451–1459. תקציר
Objective: Many nutrients essential to the fetus and for proper function of the placenta itself cannot freely diffuse across membrane barriers, and their transplacental transfer depends on transporters. Our previous studies provided evidence for altered expression of transporters for folic acid in trophoblasts exposed to antiseizure medications (ASMs). The goal of the current study was to explore the effects of older and newer ASMs on the expression and function of uptake transporters for choline, which interacts with folate at pathways for methyl group donation. Methods: BeWo cells were incubated for 2 or 5 days with valproate (42, 83, or 166 µg/ml), carbamazepine (6 or 12 µg/ml), levetiracetam (10 or 30 µg/ml), lamotrigine (3 or 12 µg/ml), lacosamide (5, 10, or 20 µg/ml), or their vehicles (n = 6/treatment group). Quantitative polymerase chain reaction (PCR) analysis was utilized to study the effects of ASMs on the transcript levels of the choline transporters SLC44A1 (CTL1) and SLC44A2 (CTL2). Transporter protein expression in valproate-treated cells was assessed by western blot analysis. Choline and acetylcholine were quantified in cell lysates by a choline/acetylcholine assay kit. Results: Compared with controls, valproate and levetiracetam at high therapeutic concentrations (83 and 30 µg/ml, respectively) lowered choline transporter transcript levels by up to 42% and 26%, and total choline levels by 20% and 21%, respectively (p <.05). At 83 $μ$g/ml, valproate additionally reduced CTL1 and CTL2 protein expression, by 39 ± 21% and 61 ± 13% (mean ± SD), respectively (p <.01). Carbamazepine reduced SLC44A1 transcript levels, whereas lacosamide modestly decreased the expression of SLC44A2. Lamotrigine did not alter choline transporter expression. Significance: Antiseizure medications, particularly at high therapeutic concentrations, can interfere with the placental uptake of choline. In line with current knowledge from pregnancy registries and clinical studies, the present in vitro findings further support careful adjustment of maternal ASM doses during pregnancy.
Noam Y. Steinman, Tan Hu, Aviv Dombrovsky, Meital Reches, ו Abraham J. Domb. 2021. “Antiviral Polymers Based on N -Halamine Polyurea.” Biomacromolecules, Pp. acs.biomac.1c00920. Publisher's Version
Claudia Schmidt, Tomer Babu, Hana Kostrhunova, Annika Timm, Uttara Basu, Ingo Ott, Valentina Gandin, Viktor Brabec, ו Dan Gibson. 2021. “Are Pt(IV) Prodrugs That Release Combretastatin A4 True Multi-action Prodrugs?” Journal of Medicinal Chemistry, 64, 15, Pp. 11364–11378. תקציר
"Multi-action"Pt(IV) derivatives of cisplatin with combretastatin A4 (CA4) bioactive ligands that are conjugated to Pt(IV) by carbonate are unique because the ligand (IC50 < 10 nM) is dramatically 1000-folds more cytotoxic than cisplatin in vitro. The Pt(IV)-CA4 prodrugs were as cytotoxic as CA4 itself, indicating that the platinum moiety probably plays an insignificant role in triggering cytotoxicity, suggesting that the Pt(IV)-CA4 complexes act as prodrugs for CA4 rather than as true multi-action prodrugs. In vivo tests (Lewis lung carcinoma) show that ctc-[Pt(NH3)2(PhB)(CA4)Cl2] inhibited tumor growth by 93% compared to CA4 (67%), cisplatin (84%), and 1:1:1 cisplatin/CA4/PhB (85%) while displaying <5% body weight loss compared to cisplatin (20%) or CA4 (10%). In this case, and perhaps with other extremely potent bioactive ligands, platinum(IV) acts merely as a self-immolative carrier triggered by reduction in the cancer cell with only a minor contribution to cytotoxicity.
Young-Mo Kim, Faridah Abas, Yong-Seo Park, Yang-Kyun Park, Kyung-Sik Ham, Seong-Gook Kang, Martyna Lubinska-Szczygeł, Aviva Ezra, ו Shela Gorinstein. 2021. “Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon.” Molecules (Basel, Switzerland), 26, 15. תקציר
Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), $\alpha$-$\beta$-globulin ($\alpha$-$\beta$ G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, $\alpha$-$\beta$ G and Fgn will be predictors of coronary artery disease (CAD).
Nikhil Biswas, Aiman Abu Ammar, Marina Frušić-Zlotkin, Naama Adi-Hen, Yonat Lehman-Katabi, Yael Levi-Kalisman, Taher Nassar, ו Simon Benita. 2021. “Biodistribution and efficacy of the anticancer drug, oxaliplatin palmitate acetate, in mice.” International journal of pharmaceutics, 604, Pp. 120740. תקציר
Oxaliplatin palmitate acetate (OPA), a platinum (IV) oxaliplatin derivative, was previously designed with the aim to improve the platinum-based anti-cancer therapy. In this work, we further explore the potential of OPA in extensive in vitro and in vivo studies. OPA in pancreatic (BxPC3-luc), lung (NCI-H1993) and liver (Hep3B) cancer cell lines showed a higher toxicity in comparison to oxaliplatin. The in vitro release kinetic experiments of OPA from the nanoparticles (NPs) under sink conditions exhibited a very rapid profile. Furthermore, OPA cannot be considered a prodrug of oxaliplatin, based on the OPA intact molecule pharmacokinetic profile study in rats. The formation of oxaliplatin from the biodegradation of OPA ranges only from 5% to 7% and both drugs were rapidly eliminated from the plasma. Pharmacokinetics of OPA PLGA nanoparticles in mice showed that nanoparticles failed to prolong the release of OPA in the plasma and did not add any therapeutic benefit over OPA solution, as suggested by the rapid in vitro release of OPA from nanoparticles. In pancreatic xenograft BxPC3-luc cancer model, both OPA in solution and OPA nanoparticles inhibited the tumor growth, equally and significantly, as compared to oxaliplatin. In liver xenograft Hep3B cancer model, OPA solution and cisplatin demonstrated good and similar antitumor efficacy. In lung xenograft NCI-H1993 cancer model, OPA solution, with a significant antitumor efficacy, was superior to cisplatin, which did not differ from the vehicle. In conclusion, OPA may offer a promising advance in platinum-based chemotherapy against various forms of cancers in an adequate dose and schedule.
The safety of switching between generic products of antiseizure medications (ASMs) continues to be a hot topic in epilepsy management. The main reason for concern relates to the uncertainty on whether, and when, two generics found to be bioequivalent to the same brand (reference) product are bioequivalent to each other, and the risk of a switch between generics resulting in clinically significant changes in plasma ASM concentrations. This article addresses these concerns by discussing the distinction between bioequivalence and statistical testing for significant difference, the importance of intra-subject variability in interpreting bioequivalence studies, the stricter regulatory bioequivalence requirements applicable to narrow-therapeutic-index (NTI) drugs, and the extent by which currently available generic products of ASMs comply with such criteria. Data for 117 oral generic products of second-generation ASMs approved in Europe by the centralized, mutual recognition or decentralized procedure were analyzed based on a review of publicly accessible regulatory assessment reports. The analysis showed that for 99% of generic products assessed (after exclusion of gabapentin products), the 90% confidence intervals (90% CIs) of geometric mean ratios (test/reference) for AUC (area under the drug concentration vs time curve) were narrow and wholly contained within the acceptance interval (90%–111%) applied to NTI drugs. Intra-subject variability for AUC was <10% for 53 (88%) of the 60 products for which this measure was reported. Many gabapentin generics showed broader, 90% CIs for bioequivalence estimates, and greater intra-subject variability, compared with generics of other ASMs. When interpreted within the context of other available data, these results suggest that any risk of non-bioequivalence between these individual generic products is small, and that switches across these products are not likely to result in clinically relevant changes in plasma drug exposure. The potential for variability in exposure when switching across generics is likely to be greatest for gabapentin.
Yoel Goldstein, Sarah Spitz, Keren Turjeman, Florian Selinger, Yechezkel Barenholz, Peter Ertl, Ofra Benny, ו Danny Bavli. 2021. “Breaking the Third Wall: Implementing 3D-Printing Technics to Expand the Complexity and Abilities of Multi-Organ-on-a-Chip Devices.” Micromachines, 12, 6. תקציר
The understanding that systemic context and tissue crosstalk are essential keys for bridging the gap between in vitro models and in vivo conditions led to a growing effort in the last decade to develop advanced multi-organ-on-a-chip devices. However, many of the proposed devices have failed to implement the means to allow for conditions tailored to each organ individually, a crucial aspect in cell functionality. Here, we present two 3D-print-based fabrication methods for a generic multi-organ-on-a-chip device: One with a PDMS microfluidic core unit and one based on 3D-printed units. The device was designed for culturing different tissues in separate compartments by integrating individual pairs of inlets and outlets, thus enabling tissue-specific perfusion rates that facilitate the generation of individual tissue-adapted perfusion profiles. The device allowed tissue crosstalk using microchannel configuration and permeable membranes used as barriers between individual cell culture compartments. Computational fluid dynamics (CFD) simulation confirmed the capability to generate significant differences in shear stress between the two individual culture compartments, each with a selective shear force. In addition, we provide preliminary findings that indicate the feasibility for biological compatibility for cell culture and long-term incubation in 3D-printed wells. Finally, we offer a cost-effective, accessible protocol enabling the design and fabrication of advanced multi-organ-on-a-chip devices.
Valentina Franco, Meir Bialer, ו Emilio Perucca. 2021. “Cannabidiol in the treatment of epilepsy: Current evidence and perspectives for further research.” Neuropharmacology, 185, Pp. 108442. תקציר
The therapeutic potential of cannabidiol (CBD) in seizure disorders has been known for many years, but it is only in the last decade that major progress has been made in characterizing its preclinical and clinical properties as an antiseizure medication. The mechanisms responsible for protection against seizures are not fully understood, but they are likely to be multifactorial and to include, among others, antagonism of G protein-coupled receptor, desensitization of transient receptor potential vanilloid type 1 channels, potentiation of adenosine-mediated signaling, and enhancement of GABAergic transmission. CBD has a low and highly variable oral bioavailability, and can be a victim and perpetrator of many drug-drug interactions. A pharmaceutical-grade formulation of purified CBD derived from Cannabis sativa has been evaluated in several randomized placebo-controlled adjunctive-therapy trials, which resulted in its regulatory approval for the treatment of seizures associated with Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Interpretation of results of these trials, however, has been complicated by the occurrence of an interaction with clobazam, which leads to a prominent increase in the plasma concentration of the active metabolite N-desmethylclobazam in CBD-treated patients. Despite impressive advances, significant gaps in knowledge still remain. Areas that require further investigation include the mechanisms underlying the antiseizure activity of CBD in different syndromes, its pharmacokinetic profile in infants and children, potential relationships between plasma drug concentration and clinical response, interactions with other co-administered medications, potential efficacy in other epilepsy syndromes, and magnitude of antiseizure effects independent from interactions with clobazam. This article is part of the special issue on 'Cannabinoids'.
Yara Zoabi, Fidan Rahimli Alekberli, Yael Minai-Fleminger, Ron Eliashar, ו Francesca Levi-Schaffer. 2021. “CD48 Expression on Eosinophils in Nasal Polyps of Chronic Rhinosinusitis Patients.” International archives of allergy and immunology, Pp. 1–9. תקציר
INTRODUCTION: The pathogenesis of chronic rhinosinusitis (CRS) with nasal polyps (CRSwNPs) is not yet completely understood. Based on current knowledge, the infiltration of mast cells and eosinophils in nasal polyps (NPs) plays an important role. This study aimed to investigate the interplay of asthma and allergy etiopathology in CRSwNPs patients by specifically studying tissue mast cells and eosinophils and the pro-inflammatory marker CD48. METHODS: Immunohistochemistry was used to assess eosinophils, mast cells, and CD48 expressing eosinophils infiltrating NPs, and flow cytometry was used to assess surface receptors expression on eosinophils from digested NPs. RESULTS: Immunohistochemical analyses showed that mast cell infiltration in NPs is higher in allergic patients in comparison to nonallergic patients; eosinophils infiltration in asthmatic NPs was significantly elevated in comparison to the nonasthmatic NPs, and membrane CD48 (mCD48) expression on eosinophils infiltrating nonallergic asthmatic NPs was highly elevated in comparison to the other subgroups. Similarly, mCD48 and its high-affinity ligand m2B4's expression on eosinophils from enzymatically digested NPs were significantly higher in nonallergic asthmatics in comparison to allergic asthmatics. CONCLUSIONS: Eosinophil infiltration in NPs for asthmatic patients, and mast cell infiltration for allergic patients, may be used as reliable biomarkers for endotyping CRSwNPs. In addition, CD48 in asthmatic patients who developed CRSwNPs could be regarded as a potential target for treatment.
Michal Weitman, Corina Bejar, Michal Melamed, Tehilla Weill, Inessa Yanovsky, Shani Zeeli, Abraham Nudelman, ו Marta Weinstock. 2021. “Comparison of the tissue distribution and metabolism of AN1284, a potent anti-inflammatory agent, after subcutaneous and oral administration in mice.” Naunyn-Schmiedeberg's Archives of Pharmacology. תקציר
This study is to compare the tissue distribution and metabolism of AN1284 after subcutaneous and oral administration at doses causing maximal reductions in IL-6 in plasma and tissues of mice. Anti-inflammatory activity of AN1284 and its metabolites was detected in lipopolysaccharide (LPS) activated RAW 264.7 macrophages. Mice were given AN1284 by injection or gavage, 15 min before LPS. IL-6 protein levels were measured after 4 h. Using a liquid chromatography/mass spectrometry method we developed, we showed that AN1284 is rapidly metabolized to the indole (AN1422), a 7-OH derivative (AN1280) and its glucuronide. AN1422 has weaker anti-inflammatory activity than AN1284 in LPS-activated macrophages and in mice. AN1284 (0.5 mg/kg) caused maximal reductions in IL-6 in the plasma, brain, and liver when injected subcutaneously and after gavage only in the liver. Similar reductions in the plasma and brain required a dose of 2.5 mg/kg, which resulted in 5.5-fold higher hepatic levels than after injection of 0.5 mg/kg, but 7, 11, and 19-fold lower ones in the plasma, brain, and kidneys, respectively. Hepatic concentrations produced by AN1284 were 2.5 mg/kg/day given by subcutaneously implanted mini-pumps that were only 12% of the peak levels seen after acute injection of 0.5 mg/kg. Similar hepatic concentrations were obtained by (1 mg/kg/day), administered in the drinking fluid. These were sufficient to decrease hepatocellular damage and liver triglycerides in previous experiments in diabetic mice. AN1284 can be given orally by a method of continuous release to treat chronic liver disease, and its preferential concentration in the liver should limit any adverse effects.
Lior Minkowicz, Arie Dagan, Vladimir Uvarov, ו Ofra Benny. 2021. “Controlling Calcium Carbonate Particle Morphology, Size, and Molecular Order Using Silicate.” Materials (Basel, Switzerland), 14, 13. תקציר
Calcium carbonate (CaCO(3)) is one of the most abundant substances on earth and has a large array of industrial applications. Considerable research has been conducted in an effort to synthesize calcium carbonate microparticles with controllable and specific morphologies and sizes. CaCO(3) produced by a precipitation reaction of calcium nitrate and sodium carbonate solution was found to have high polymorphism and batch to batch variability. In this study, we investigated the polymorphism of the precipitated material and analyzed the chemical composition, particle morphology, and crystalline state revealing that the presence of silicon atoms in the precipitant is a key factor effecting particle shape and crystal state. An elemental analysis of single particles within a polymorphic sample, using energy-dispersive X-ray spectroscopy (EDS) conjugated microscopy, showed that only spherical particles, but not irregular shaped one, contained traces of silicon atoms. In agreement, silicon-containing additives lead to homogenous, amorphous nanosphere particles, verified by X-ray powder diffraction (XRD). Our findings provide important insights into the mechanism of calcium carbonate synthesis, as well as introducing a method to control the precipitants at the micro-scale for many diverse applications.
Racheli Sharon Gabbay ו Abraham Rubinstein. 2021. “Controlling the release rate of topotecan from PLGA spheres and increasing its cytotoxicity towards glioblastoma cells by co-loading with calcium chloride.” International journal of pharmaceutics, 602, Pp. 120616. תקציר
It has been suggested that local administration of topotecan (TT) could increase its efficacy in the treatment of glioblastoma. In this context, a PLGA implant model in the form of spheres with a porous core and stiff surface, loaded with TT and CaCl(2) was developed. An array of formulations differing from each other by the type of PLGA used, the integrity of the surface, the concentrations of TT and CaCl(2) added during the preparation, and the volume of water in the PLGA mix, was prepared, screened and explored by computerized multifactorial analysis. This analysis enabled the simultaneous identification of the most influential experimental factors on the experimental responses, which were pre-determined as the efficiency of TT loading and the TT % cumulative release at 14 days. The multifactorial analysis also revealed how the interactions among the experimental factors affect the performance of the various formulations. Thus, TT concentration and its factorial interaction with the concentration of CaCl(2) added during the spheres' preparation were identified as most prominent on the loading efficiency, while the surface integrity (intact or punctured) and CaCl(2) amount in the spheres were identified as most prominent on the TT % cumulative release from the spheres. TT was found to be cytotoxic towards glioblastoma U87 MG cells, an activity which was enhanced, synergistically, in the presence of CaCl(2) (the relative viability was reduced from 36 to 28% with combination indices of 1.0, 0.37, 0.13 and 0.06 for EC(50), EC(75), EC(90) and EC(95), respectively). Interestingly, dividing the TT dose into 3 equal portions, replenished daily to the incubation medium, increased TT cytotoxicity. The relative viability was then reduced from 35 to 7% and in the presence of CaCl(2) - from 28 to 1.9%, suggesting that a local, slow input of TT could be effective in the treatment of glioblastoma by an adjacent TT implant. The increased effect of CaCl(2) on cytotoxicity was also observed when it was co-loaded into the TT spheres. In that case, the cells' viability was reduced from 72 to 27%. It is suggested that the PLGA spheres could be used for tunable local delivery of TT in post-resection adjuvant therapy of glioblastoma.
The coronavirus disease 2019 (COVID-19) pandemic stimulated both the scientific community and healthcare companies to undertake an unprecedented effort with the aim of understanding the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing effective therapeutic solutions. The peculiar immune response triggered by this virus, which seems to last only few months, led to a search for alternatives such as passive immunization in addition to conventional vaccinations. Convalescent sera, monoclonal antibodies selected from the most potent neutralizing binders induced by the virus infection, recombinant human single-domain antibodies, and binders of variable scaffold and different origin have been tested alone or in combination exploiting monovalent, multivalent and multispecific formats. In this review, we analyse the state of the research in this field and present a summary of the ongoing projects finalized to identify suitable molecules for therapies based on passive immunization.
M Grunewald, S Kumar, H Sharife, E Volinsky, A Gileles-Hillel, T Licht, A Permyakova, L Hinden, S Azar, Y Friedmann, P Kupetz, R Tzuberi, A Anisimov, K Alitalo, M Horwitz, S Leebhoff, OZ Khoma, R Hlushchuk, V Djonov, R Abramovitch, J Tam, ו E Keshet. 2021. “Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span.” Science (New York, N.Y.), 373, 6554. תקציר
Aging is an established risk factor for vascular diseases, but vascular aging itself may contribute to the progressive deterioration of organ function. Here, we show in aged mice that vascular endothelial growth factor (VEGF) signaling insufficiency, which is caused by increased production of decoy receptors, may drive physiological aging across multiple organ systems. Increasing VEGF signaling prevented age-associated capillary loss, improved organ perfusion and function, and extended life span. Healthier aging was evidenced by favorable metabolism and body composition and amelioration of aging-associated pathologies including hepatic steatosis, sarcopenia, osteoporosis, "inflammaging" (age-related multiorgan chronic inflammation), and increased tumor burden. These results indicate that VEGF signaling insufficiency affects organ aging in mice and suggest that modulating this pathway may result in increased mammalian life span and improved overall health.
Odelia Tepper, Hongchao Zheng, Daniel H. Appella, ו Eylon Yavin. 2021. “Cyclopentane FIT-PNAs: Bright RNA sensors.” Chemical Communications, 57, 4, Pp. 540–543. תקציר
Cyclopentane modified FIT-PNA (cpFIT-PNA) probes are reported as highly emissive RNA sensors with the highest reported brightness for FIT-PNAs. Compared to FIT-PNAs, cpFIT-PNAs have improved mismatch discrimination for several pyrimidine-pyrimidine single nucleotide variants (SNVs).
Amani Zoabi ו Katherine Margulis. 2021. “Differential Interactions of Chiral Nanocapsules with DNA.” International journal of molecular sciences, 22, 2. תקציר
(1) Background: Chiral nanoparticular systems have recently emerged as a compelling platform for investigating stereospecific behavior at the nanoscopic level. We describe chiroselective supramolecular interactions that occur between DNA oligonucleotides and chiral polyurea nanocapsules. (2) Methods: We employ interfacial polyaddition reactions between toluene 2,4-diisocyanate and lysine enantiomers that occur in volatile oil-in-water nanoemulsions to synthesize hollow, solvent-free capsules with average sizes of approximately 300 nm and neutral surface potential. (3) Results: The resultant nanocapsules exhibit chiroptical activity and interact differentially with single stranded DNA oligonucleotides despite the lack of surface charge and, thus, the absence of significant electrostatic interactions. Preferential binding of DNA on D-polyurea nanocapsules compared to their L-counterparts is demonstrated by a fourfold increase in capsule size, a 50% higher rise in the absolute value of negative zeta potential ($\zeta$-potential), and a three times lower free DNA concentration after equilibration with the excess of DNA. (4) Conclusions: We infer that the chirality of the novel polymeric nanocapsules affects their supramolecular interactions with DNA, possibly through modification of the surface morphology. These interactions can be exploited when developing carriers for gene therapy and theranostics. The resultant constructs are expected to be highly biocompatible due to their neutral potential and biodegradability of polyurea shells.
Paweł Paśko, Agnieszka Galanty, Paweł Zagrodzki, Patraporn Luksirikul, Dinorah Barasch, Alina Nemirovski, ו Shela Gorinstein. 2021. “Dragon Fruits as a Reservoir of Natural Polyphenolics with Chemopreventive Properties.” Molecules (Basel, Switzerland), 26, 8. תקציר
Dragon fruits are a valued source of bioactive compounds with high potential to become a functional food. The aim of the study was to evaluate and compare the chemopreventive potential and chemical composition of fruits harvested in Thailand and Israel. The amount of different compounds in water and methanol extracts and antioxidant activity was investigated. Moreover, cytotoxic activity against cancer and normal cells of skin, prostate, and gastrointestinal origin was performed, accompanied by anti-inflammatory assay based on NO production in RAW 264.7 macrophage model. Additionally, the quenching properties of polyphenols from fruits were determined by the interaction of the main drug carrier in blood human serum (HSA). The chemometric analysis was used to reveal the relationships between the determined parameters. Dragon fruits harvested in Israel revealed higher antioxidant properties and total content of polyphenols and betacyanins when compared to those from Thailand. The examined fruits of both origins showed significant cytotoxic activity toward colon and prostate cancer cells, with no toxic effect on normal cells, but also no anti-inflammatory effect. Moreover, a high binding ability to HSA was observed for water extracts of dragon fruits. All these predestine dragon fruits are the candidates for the attractive and chemopreventive elements of daily diet.